Bioessays Impact Factor 2010 Ford

1. Torrella F, Morita RY. Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, oregon: ecological and taxonomical implications. Appl Environ Microbiol. 1979;37:774–8.[PMC free article][PubMed]

2. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38:525–52.[PubMed]

3. Bergh O, Borsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–8.[PubMed]

4. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004;186:3677.[PMC free article][PubMed]

5. Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69.[PMC free article][PubMed]

6. Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.[PubMed]

7. Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.[PubMed]

8. Comeau AM, Krisch HM. War is peace - dispatches from the bacterial and phage killing fields. Curr Opin Microbiol. 2005;8:488–94.[PubMed]

9. Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.[PMC free article][PubMed]

10. Van Valen L. A new evolutionary law. Evol Theor. 1973;1:1–30.

11. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.[PubMed]

12. Tock MR, Dryden DT. The biology of restriction and anti-restriction. Curr Opin Microbiol. 2005;8:466–72.[PubMed]

13. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE - a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2010;38:D234–6.[PMC free article][PubMed]

14. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE - restriction enzymes and DNA methyltransferases. Nucleic Acids Res. 2005;33:D230.[PMC free article][PubMed]

15. Kruger DH, Bickle TA. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev. 1983;47:345–60.[PMC free article][PubMed]

16. Bandyopadhyay PK, Studier FW, Hamilton DL, Yuan R. Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J Mol Biol. 1985;182:567–78.[PubMed]

17. Wang Z, Mosbaugh DW. Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. 1989;264:1163–71.[PubMed]

18. Wang Z, Mosbaugh DW. Uracil-DNA glycosylase inhibitor of bacteriophage PBS2: cloning and effects of expression of the inhibitor gene in Escherichia coli. J Bacteriol. 1988;170:1082–91.[PMC free article][PubMed]

19. Putnam CD, Tainer JA. Protein mimicry of DNA and pathway regulation. DNA Repair (Amst) 2005;4:1410–20.[PubMed]

20. Rocha EP, Danchin A, Viari A. Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res. 2001;11:946–58.[PubMed]

21. Raleigh EA, Wilson G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc Natl Acad Sci USA. 1986;83:9070–4.[PMC free article][PubMed]

22. Bair CL, Rifat D, Black LW. Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J Mol Biol. 2007;366:779–89.[PMC free article][PubMed]

23. Bair CL, Black LW. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J Mol Biol. 2007;366:768–78.[PMC free article][PubMed]

24. Rifat D, Wright NT, Varney KM, Weber DJ, et al. Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol. 2008;375:720–34.[PMC free article][PubMed]

25. Ishino Y, Shinagawa H, Makino K, Amemura M, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429.[PMC free article][PubMed]

26. Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43:1565–75.[PubMed]

27. Sorek R, Kunin V, Hugenholtz P. CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol. 2008;6:181–6.[PubMed]

28. Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics. 2007;8:172.[PMC free article][PubMed]

29. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151:2551–61.[PubMed]

30. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60:174–82.[PubMed]

31. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–63.[PubMed]

32. Barrangou R, Fremaux C, Deveau H, Richards M, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–12.[PubMed]

33. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70.[PubMed]

34. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11:181–90.[PMC free article][PubMed]

35. van der Oost J, Jore MM, Westra ER, Lundgren M, et al. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009;34:401–7.[PubMed]

36. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322:1843.[PMC free article][PubMed]

37. Brouns SJ, Jore MM, Lundgren M, Westra ER, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321:960–4.[PubMed]

38. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006;1:7.[PMC free article][PubMed]

39. Hale CR, Zhao P, Olson S, Duff MO, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 2009;139:945–56.[PMC free article][PubMed]

40. Deveau H, Barrangou R, Garneau JE, Labonte J, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.[PMC free article][PubMed]

41. Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One. 2009;4:e4169.[PMC free article][PubMed]

42. Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science. 2008;320:1047–50.[PubMed]

43. Qimron U, Tabor S, Richardson CC. New Details about Bacteriophage T7-Host Interactions. Microbe. 2010;5:117–20.

44. Chopin MC, Chopin A, Bidnenko E. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol. 2005;8:473–9.[PubMed]

45. Durmaz E, Klaenhammer TR. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J Bacteriol. 2007;189:1417.[PMC free article][PubMed]

46. Bidnenko E, Ehrlich D, Chopin MC. Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J Bacteriol. 1995;177:3824.[PMC free article][PubMed]

47. Georgiou T, Yu YTN, Ekunwe S, Buttner MJ, et al. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc Natl Acad Sci USA. 1998;95:2891.[PMC free article][PubMed]

48. Morad I, Chapman-Shimshoni D, Amitsur M, Kaufmann G. Functional expression and properties of the tRNA (Lys)-specific core anticodon nuclease encoded by Escherichia coli prrC. J Biol Chem. 1993;268:26842.[PubMed]

49. Snyder L. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol Microbiol. 1995;15:415–20.[PubMed]

50. Blower TR, Fineran PC, Johnson MJ, Toth IK, et al. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J Bacteriol. 2009;191:6029–39.[PMC free article][PubMed]

51. Gerdes K, Christensen SK, Lobner-Olesen A. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol. 2005;3:371–82.[PubMed]

52. Hazan R, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics. 2004;272:227–34.[PubMed]

53. Pecota DC, Wood TK. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J Bacteriol. 1996;178:2044.[PMC free article][PubMed]

54. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA. 2009;106:894–9.[PMC free article][PubMed]

55. Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 2001;29:3742–56.[PMC free article][PubMed]

56. Hayes F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science. 2003;301:1496–9.[PubMed]

57. Hoskisson PA, Smith MC. Hypervariation and phase variation in the bacteriophage 'resistome'. Curr Opin Microbiol. 2007;10:396–400.[PubMed]

58. Orlowski J, Bujnicki JM. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res. 2008;36:3552.[PMC free article][PubMed]

59. Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol. 2005;1:e60.[PMC free article][PubMed]

60. Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 2007;8:R61.[PMC free article][PubMed]

61. Sharp PM, Kelleher JE, Daniel AS, Cowan GM, et al. Roles of selection and recombination in the evolution of type I restriction-modification systems in enterobacteria. Proc Natl Acad Sci USA. 1992;89:9836–40.[PMC free article][PubMed]

62. Murray NE, Daniel AS, Cowan GM, Sharp PM. Conservation of motifs within the unusually variable polypeptide sequences of type I restriction and modification enzymes. Mol Microbiol. 1993;9:133–43.[PubMed]

63. Zheng Y, Roberts RJ, Kasif S. Identification of genes with fast-evolving regions in microbial genomes. Nucleic Acids Res. 2004;32:6347–57.[PMC free article][PubMed]

64. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003;31:1805–12.[PMC free article][PubMed]

65. Kroger M, Hobom G, Schutte H, Mayer H. Eight new restriction endonucleases from Herpetosiphon giganteus-divergent evolution in a family of enzymes. Nucleic Acids Res. 1984;12:3127.[PMC free article][PubMed]

66. Mullings R, Bennett SP, Brown NL. Investigation of sequence homology in a group of type-II restriction/modification isoschizomers. Gene. 1988;74:245–51.[PubMed]

67. Wilson G, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627.[PubMed]

BioEssays is a monthly peer-reviewedreview journal covering molecular and cellular biology. Areas covered include genetics, genomics, epigenetics, evolution, developmental biology, neuroscience, human biology, physiology, systems biology, and plant biology. The journal also publishes commentaries on aspects of science communication, education, policy, and current affairs.


The journal was established in December 1984 by founding editor-in-chief William J. Whelan under the auspices of the International Union of Biochemistry and Molecular Biology. Adam S. Wilkins became editor in January 1990. Originally published by ICSU Press and The Company of Biologists, BioEssays has been published by John Wiley & Sons since January 1998. Andrew Moore became editor-in-chief in August 2008.


BioEssays offers an article-commenting facility via its website. Topics of particular current attention are often highlighted for commenting.

Abstracting and indexing[edit]

The journal is abstracted and indexed in:

According to the Journal Citation Reports, the journal has a 2012 impact factor of 5.423.[1]


External links[edit]


Leave a Reply

Your email address will not be published. Required fields are marked *